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Steady, one-dimensional flow of a compressible fluid through a collapsible tube is 
analysed. A general model is employed, incorporating axial variations in the 
parameters of the conducting system, such as the tube unstressed cross-section area 
and wall stiffness, the external pressure and energy exchange with the environment. 
The flow variables are described in differential form as functions of the conduit 
system parameters. A coupled set of equations for the dependent flow variables is 
summarized in a table of influence coefficients, which provides a clear and simple 
description of the effects produced by the system parameters. Examples of the effects 
of fluid compressibility in the respiratory system are presented for forced expiration 
manoeuvres. The effects are found to be generally small, but are most accentuated 
when breathing heavy gases and when the airways are pathologically stiffened. 

1. Introduction 
Flow through compliant tubes is usually treated as incompressible, even though 

the fluid may be a compressible gas. The one-dimensional theory of an incompressible 
fluid flow through a collapsible tube is already well established (Shapiro 1977), and 
is most often applied to physiological flows. While the assumption of fluid 
incompressibility is valid for blood or urine flows, the question arises whether it is 
sometimes not accurate for airflow in the bronchial network within the lung. I n  
particular, fluid compressibility may be important in coughs or forced expiration 
manoeuvres, when air is rapidly expired from the lung. Pedersen et al. (1982, figure 
1 1 )  induced forced expiration manoeuvres in mongrel dogs, and measured maximal 
flow rates of about 8 l/s at mid-trachea as well as cross-sectional areas of 
approximately 0.8cm2. These results indicate that the Mach number is app- 
roximately 0.3 at the flow limitation site (FLS). If the fluid downstream from the 
FLS is supercritical or passes though local non-uniformities (Elad, Kamm & Shapiro 
1987), the Mach number may attain even higher values, in which case the effects of 
fluid compressibility may be important. 

We present here a formulation for one-dimensional, steady flow of a perfect gas 
through a collapsible tube. The effects of the gas compressibility on the overall 
mechanical response of the fluid and tube is examined in lung models that, 
previously, have been analysed on the assumption of incompressibility (Elad et al. 
1987; Elad, Kamm & Shapiro 19883). 
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2. One-dimensional steady flow 
2.1. Assumptions of the model 

The cross-section of a collapsible tube exhibits a complex geometry when subjected 
to negative transmural (internal minus external) pressure. In  general, the flow is then 
of a complicated three-dimensional nature. A common simplifying assumption in 
theoretical treatments of such flows, employed here, is that  the flow is one- 
dimensional, with the fluid parameters averaged across the cross-section. 

We assume that the following properties of the conducting tube vary along the 
axis of the tube : the unstressed (‘resting ’) cross-sectional area, A,  ; the elastic 
properties of the tube wall, represented by a stiffness parameter, Kp; and the pressure 
acting on the external wall of the tube, p,. It is further assumed that the wavelength 
of longitudinal variations is much larger than the diameter of the tube, thus 
rendcring transverse gradients negligible compared with longitudinal gradients. The 
flow is considered to be steady, fully developed, and in the turbulent range. 
Compressibility is taken into account by treating the flow as a perfect gas with fixed 
molecular weight W ,  and a constant specific heat c,. Energy interchange with the 
outside or through latent heat effects is represented generally by axial variation of 
the stagnation temperature To; the flow is here assumed adiabatic, i.e. dT,/dx = 0, 
except for a preliminary comparison with the isothermal case. Gravity is neglected. 

2 .2 .  Governing equations and deftnitions 

Consider an infinitesimal control volume that consists of a section of the tube of 
length dx. Several physical quantities are thought of as dependent variables, 
assumed continuously variable along x :  the tube cross-sectional area A ;  and the 
cross-sectional-averaged values of fluid pressure p ; velocity u ;  and density p. 

Equation of state. For a perfect gas, 

dp - dp d T  
p =pRT;  01 - --+--, 

P P T  

where 1’ is the absolute temperature and R is the gas constant of the particular gas. 

Fluid wave speed. The velocity of sound in a perfect gas is 

where y = cp/c, is the ratio of the specific heats a t  constant pressure (c,) and a t  
constant volume ( c ~ ) .  

Tube law. The ‘tube law ’, relating the transmural pressure to the cross-sectional area 
of the tube a t  static conditions, is represented by 

where pe(x )  is the external pressure, n ( a ,  x )  is the dimensionless transmural pressure, 
and a: = A/A ,  is the dimensionless area ratio. Here, A,(x) is the unstressed cross- 
sectional area, and Kp(x) is the tube stiffness parameter, both of which may vary 
with x .  
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Tube wave speed. The speed of propagation of long waves with infinitesimal area 
changes in compliant tubes is given by 

or in the differential forms 
d a  a17 
a P a x  

dp = dpe+&-+K -dx+17dKp; 

Combined wave speed. Dynamically induced pressure changes produce corresponding 
area changes in the tube as well as density changes in the gas. These are related to 
the pressure change through the respective compliances: ( l /A) ( U / d p )  and ( l /p)  
(dpldp) which are recognized as the quantities l/(pc;) and l/(pc;), where the 
isentropic density derivative characterizes the gas compliance. Thus, the ratio 

is a measure of the relative magnitudes of the two compliances. Moreover, since the 
compliances are effectively in series, the combined small-amplitude wave speed is 
given by (e.g. Lighthill 1978) 

For a gas, the stiffness (inverse compliance) is c i  = yRT/ W ,  where R denotes the 
universal gas constant and W the molecular weight. For an unstressed tube in partial 
collapse (i.e. under negative transmural pressure) the stiffness is proportional to the 
circumferential bending stiffness and is also strongly dependent on the degree of 
collapse. Thus, when a = O( l), the tube is relatively stiff against collapse ; in the range 
0.2 < a < 0.8 it is relatively compliant ; while for a < 0.2 it again becomes quite stiff. 
Typical comparative stiffness for several gas mixtures and airway generations at two 
particular lung volumes are given in table 1. The tube wave speed c$ is calculated 
from the tube law we have developed for the airways (Elad, Kamm & Shapiro 1 9 8 8 ~ )  
at an area ratio of a = 0.7. 

In  general, the gas mixtures are much stiffer than the airways, especially for 
lighter gas mixtures. These comparative stiffnesses determine the nature of the 
results shown later. 

Mach number and speed index. The nature of compressible flow patterns depends on 
the comparative magnitudes of the fluid velocity and the speed of sound. A 
corresponding dependence applies to flow through collapsible tubes. The Mach 
number M and the speed index S are thus defined as 
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Airway Principal Lobe Bronchiole Terminal 
Trachea bronchus bronchus d < l m m  bronchiole 

V,, (% TLC) V,, (% TLC) V,, (% TLC) V,, (Yo TLC) V,, (% TLC) 

Gas mixture 75.0 41.9 75.0 41.9 75.0 41.9 75.0 41.9 75.0 41.9 

13.4 19.6 28.6 41.8 38.6 56.4 57.9 84.5 76.3 111.7 
15.4 22.5 32.8 48.0 44.3 64.9 66.6 97.3 87.7 128.2 
9.8 14.4 21.0 30.7 28.4 41.5 42.6 62.2 56.1 82.0 

He-0, 

Air \ 
SF,-O, 

TABLE 1. Comparison between gas and tube stiffness (c:/ci) for three gas mixtures and several 
airway generations. c; is evaluated from the tube law previously developed (Elad et al. 1988a) a t  
a = 0.7. Lung volume v, = 41.9% total lung capacity (TLC) is equivalent to V, = 25% vital 
capacity (VC). 

The combined speed index is then defined through 

Conservation of mass. In steady flow, mass conservation requires that 

puA = constant. (10) 

Introducing the area ratio a and differentiating, this may be written as 

dp du da dAo- -+-+-+-- 0. 
p u a . 0  

Momentum equation. For the infinitesimal control volume previously defined, the 
momentum equation is 

where 7, is the wall shear stress and s is the perimeter of the cross-section. As is 
customary, the skin-friction stress of a turbulent flow is expressed as 7, = fT(+pu2),, 
where fT, the skin-friction coefficient, is only a weak function of Reynolds number. 
The perimeter s = constant = nDo during collapse, where Do = (4Ao/n)i is the rest 
diameter. Then the equivalent hydraulic diameter is D,  = 4A/s ;  consequently CL E 

A/Ao = D,/Do. Thus, (12) becomes 

-Adp-TWsdx =PAudu, (12) 

or, with the help of (2) and (7) 

Energy equation. Changes in stagnation temperature T, are produced by heat 
exchange, chemical reactions, and phase change. For a perfect gas (Shapiro 1953) 

U 2  
T, = T + -  = T[1 +i(r-1)M2], 

2% 
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which, after logarithmic differentiation, becomes 

0- d T  dT+ i (y-1)W dM2 -- 
T, T l + + ( y - l ) W  M 2  ' 

Except for a preliminary comparison with the isothermal limit, where dT/T = 0, the 
numerical examples of this paper are based on the adiabatic limit. 

2.3. Differential equations and inJluence coeficients 

The set of nine equations (l) ,  (2), (5a ,b ) ,  (7),  (S), (9), ( l l ) ,  (14) and (16) include 
seventeen differential variables. Seven of these, which define the conducting system 
and environmental conditions, may be chosen as independent variables. These 
independent variables are usually 'known ' quantities which can be used to 
determine the dependent variables. I n  the present model the independent variables 
are : dAo/Ao, dT,/T,, 4fT dx/D,, dp,, dKp, (aII/ax) dx, and [a(an/aa)/ax] dx, while the 
dependent ones are : da/a,  dulu, dp/p, dp/p, dT/T, dci/ci, dc$/c$, W / W ,  dS2/S2, 
and dG2/G2. 

This set is a system of linear algebraic equations which can be solved 
simultaneously, so that each dependent variable is described in terms of the seven 
independent variables. For example, by elimination we obtain the following 
equations for dS2/S2 and dM2/W: 

(1 - W - S 2 )  - dS2 = [ 1 +  (r- 1 )  (1 -M2)] ++ dP [ - 2 + (2 - r )  s2 +M2] - d A 0  
A0 

dT, + [ 1 + (r- 1 ) S2] [ 1 + t ( y  - 1 ) W] 7 

S2 PcT 

17 K an 
De PcT pc; ax 

X- 4fT dx +2[1+i (y-1)M2]~dKp+2[ l  + t ( y -  l)W]----d~, 

(18) 
where r = 3 + a17"/l7'. 

Algebraic manipulation provides for all the dependent variables the inJluence 
coeficients that multiply the independent variables. These are summarized in table 
2. For comparison with incompressible flow through collapsible tubes, the expression 
for dp is written 

(1 -M2-S2)- dP = - - e + - q l  P ++(y- 1)W]- dT, 
PU2 Pc; A0 To 

4fTdx II K an 
De PcT pc; ax 

-+[l+(y-l)M2]- +7dKp---dx. (19) 
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Independent 
variables 

Dependent - dP, 
variables \ Pc: 

1 - 1  1 
du 

( I  -MZ-SP)- 

(1 -M'-8) - -(l-W) S* - S' 

U 

da 
a 

(1-MZ-82)- dP -w Mp - (1 -82) 
P 

TABLE 2. Influence coefficients for compressible flow through 

The several expressions for the dependent variables represented by table 2 describe 
the flow patterns in terms of the conducting system parameters. By setting to zero 
all the influence coefficients, except for those in column below the independent 
variable that is of interest, one may also explore the several simple flows in which the 
effect of each independent variable on flow behaviour can be examined individually, 

We note in (17),  (18) and (19) that  the comparative magnitudes of M2 and S2 
determine the relative importance of gas compressibility and tube compliance, in 
accord with our earlier remarks concerning the ratio c$/c;. 

2.4. General features of $ow patterns 
For negligible tube compliance, cT --f co ; hence S + 0, and the influence coefficients in 
table 2 reduce to those for gas flow with constant specific heat and molecular weight. 
On the other hand, when fluid compressibility is negligible, cF -+ 00 ; henceM-t 0, and 
table 2 then pertains to incompressible flow through collapsible tubes. 

The equation for each dependent variable is generally of the form exhibited by 
daldx : 

da Y ( a , S 2 , M 2 ,  x) 
(20) - - - 

dx 1-S2-M2 ' 

Thus, a singularity occurs a t  G2 = M2 + S2 = 1. Overlooking the fact that the one- 
dimensional approximation is weak there, all the dependent variables change a t  an 
infinite rate in this region. This is analogous to the case M2 = 1 in gas dynamics, and 
to S2 = 1 for incompressible flow through collapsible tubes (Shapiro 1977). 

The case G2 = 1 is possible mathematically, and is approximated physically, only 
in either of two circumstances : (i) G2 = 1 occurs a t  the end of the tube ; or (ii) a t  other 
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4fT dx 
De 

- n 
-a, 
Pc: 

ICYW +tw 1 1 0 

-&3s"l+(y-l)MP] - (1  -W) - ( 1  - M * )  0 

locations, there is a singularity of either saddle or nodal type a t  G2 = 1, with the flow 
passing continuously through G2 = 1 (Elad et al. 1987). The second type implies that 
the right-hand side of each of the differential equations for the dependent variables 
(e.g. daldx, . . .) is equal to 010. One finds that for G2 = 1, the right-hand side of each 
differential equation in table 2 is a numerical multiple of 

+[l+ (y-  

Thus, if this sum is zero for G2 = 1, all the equations of table 2 simultaneously have 
a right-hand side of the form 010 and a saddle-type or nodal-type singularity exists. 
This allows a continuous transition through G2 = 1 with a maximal flow rate for 
given upstream and environmental conditions. This is a case of flow limitation and 
the location where G2 = 1 is the flow limitation site (FLS). 

When there is a location where G2 = 1, whether at the tube exit or before, the flow 
is described as a critical or choked flow. When G2 < 1 the flow is subcritical, and when 
G2 > 1 it  is supercritical. Since the signs of the influence coefficients change a t  G2 = 1, 
the effects of the independent variables are of opposite sense for subcritical and 
supercritical flows. 

2.5. Independent-variable functions used for calculations 
I n  the examples that follow, we simulate respiratory airflow through the airways. 
Accordingly, we assume the external pressure to be constant, hence dp,,dx = 0. We 
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also assume dT,/dx = 0 although this is more difficult to justify. As gas accelerates 
through the narrowing airways, i t  cools owing to the increase in kinetic energy. Some 
heat is transferred to the gas from the walls, and, additionally, some moisture 
condensation may occur causing a release of latent heat. Both effects cause dT,/dx 
to be positive and tend to produce a behaviour more like isothermal than adiabatic 
flow. We have performed the calculations described in the next section, assuming 
both limiting conditions : adiabatic and isothermal. We find that, while the peak 
Mach number is slightly greater if the flow is isothermal, the differences are relatively 
small, i.e. less than 3% for peak values ofM or S. The functions A,(x), K,(x), and the 
value of fT used for the examples are presented in Appendices A and B. We also define 
a dimensionless axial length 6 = x /L .  

3. Flow limitation and forced expiration 
Those physiological flows where fluid compressibility is most likely to play an 

important role include coughs and forced expiration manoeuvres. To assess the 
possible contribution of compressibility to flow patterns in the airways we apply the 
analysis of this paper to the lung-like model, free of compressibility, previously 
developed for investigation of choking phenomena (Elad et al. 1987). The model is 
briefly described in Appendix A. The entire expiration manoeuvre is treated as a 
series of quasi-steady flows at successively smaller lung volumes. The assumption of 
quasi-steadiness is justified by the fact that  the characteristic time for a forced 
expiration is much larger than both the time required for waves to  propagate along 
the bronchial tree and for fluid particles to  traverse the conducting network. The 
fluid is assumed to be air a t  37 "C with p = 1.2 kg/m3, v = 0.15 cmz/s and y = 1.4. 

The equations of table 2 are coupled between themselves : terms of S and M appear 
in daldx, terms of a and M in dS2/dx, and so on. Thus, a simultaneous numerical 
solution is required. To illustrate the contribution of fluid compressibility for 
adiabatic and isothermal flows, numerical integrations have been performed for 
constant entrance conditions a t  fl  = 0, namely, a = 0.835, S = 0.3, Q = 2.3 l/s, where 
Q is the flow rate computed a t  6 = 0. The solid curves of figure 1 show S(6) and a(( )  
for an incompressible fluid, i.e. M = 0. When the compressibility is such that M = 0.1 
a t  fl  = 0, the curve of S(6) is lifted, the curve ofM(6) rises to about 0.4 a t  6 = 1.0, and 
the curve of G(6) lies above S(fl). The peak values of M and S are about 3 YO greater 
for the isothermal flow while the general flow patterns are similar. Further increase of 
M to 0.13 a t  6 = 0 drives the flow to choking (i.e. G +  1 a t  6 = 0.17 for isothermal flow 
and 6 = 0.27 for adiabatic flow). Unless the tube ends a t  that location, the assumed 
flow rate is physically impossible. The maximum allowable flow would be that 
combination of S and M a t  fl  = 0 that  yields G = 1 a t  6 = 1.0. 

The determination of maximal flow by the present method requires that the 
singular saddle points be located. They may be found by setting expression (21) to 
be zero for any combination of M2 + S2 = 1.  Figure 2 represents loci of such possible 
critical points for different combinations of S2+M2 = 1. By expanding the equations 
for daldfl, W / d c  and dS2/d6 in a Taylor series, the values of a, S2 and W ,  and their 
first derivatives, may be calculated a t  the critical point. Numerical integrations can 
proceed upstream and downstream. 

Consider the case where M*2 = 0.2 and S*2 = 0.8 (the asterisks define a critical 
condition). The particular critical point that  was chosen from the locus shown in 
figure 2 is the one that yields a = 1.0 at 6 = 0, where bronchial pressure equals 
alveolar pressure (paw = p A ) .  The results for critical flow (or flow limitation) of 
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1.0 I 1 

0.8 
a 
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G 
S 
M 

0 0.5 1 .o 
5 

FIGURE I .  Example showing the contribution of fluid compressibility for subcritical, adiabatic and 
isothermal flows through the lung-like model (Appendix A), using different values for M at 6 = 0. 
All flows are for a = 0.835 and S = 0.3 at E = 0. Solid curve, incompressible flow; other curves, 
compressible flow. The subscripts ‘ad’ and ‘iso’ stand for adiabatic and isothermal flow 
respectively. 

I 

0 0.5 1 .O 

FIQURE 2. Loci of critical points, calculated from the parameters of the lung-like model 
(Appendix A),  for different combinations of M**  AS*^ = 1.0. 

5’ 
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I 1  
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I I G(supercritica1) ' 

I '  
S (incompressible) 

0 0.5 1 .o 
5 

FIGURE 3. Patterns of critical flows through the lung-like model (Appendix A) .  All the flows are 
for a = 1.0 at 5 = 0. The critical compressible flow yields M*2 +S*2 = 1 at the FLS. 

incompressible and compressible fluids, both with a = 1.0 a t  6 = 0 and uniform p e ,  
are shown in figure 3. Table 3 compares some numerical values of these flows. 
Compressibility reduces the critical flow rate Q* by about 8%, increases the area 
ratio a t  the FLS by about 2%, and moves the FLS further downstream by about 
19 %. Q* was computed for both compressible and incompressible flows a t  E j  = 0 with 
the same p. The area ratios on the supercritical curve downstream of the FLS are 
much larger for compressible flows ; accordingly, the transmural pressures are also 
higher. The collapsing transmural pressure a t  the bronchial outlet (6 = 1.0) is about 
3.6 times larger for compressible flows. The supercritical velocities downstream of the 
FLS are somewhat reduced by fluid compressiblity (e.g. u = 19.4 m/s versus u = 27.0 
m/s at 6 = 0.75). 

In  physical terms, the effect of gas compressibility is to lend additional compliance 
to the system, thereby reducing the wave speed and, consequently, the flow speed a t  
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at-1.0 (P--P,)&l,o (cm H,O) 
__- 

&* Sub- Super- Sub- Super- 
Flow a* 6* [l/s] critical critical critical critical 

Incompressible 0.837 0.416 3.636 0.9483 0.3296 -2.199 - 15.776 
Compressible 0.854 0.493 3.351 0.9566 0.7774 -1.962 -4.336 

TABLE 3. Comparison between the flow parameters of the critical flows shown in figure 3. 
The inlet condition for both cases is determined by a = 1.0 at 6 = 0. 

G 
S 
M 

0.5 

0 0.5 

5 
1 .o 

FIGURE 4. Flow pattern in the lung-like model with a local perturbation imposed on the natural 
cross-sectional area, A,. (a)  Perturbation in the rest area. (6) The effect on flow of different values 
of the perturbation parameter A,. 

which flow limitation occurs. An additional effect is the reduction in gas density as 
M increases, further reducing the mass flow rate. 

The movement of FLS downstream is somewhat counterintuitive but can be 
viewed in the following way. The two main features that influence the location of the 
FLS in these calculations are friction and the variation in airway stiffness as 
characterized by dKp/d(; the FLS is established when these two effects are 
approximately balanced. If friction were progressively increased, we known from our 
experience with gas dynamic or collapsible-tube flow, that the FLS would move 
downstream, eventually reaching the end of the tube at  which point a smooth 
transition to supercritical flow would no longer be possible. As seen from (2 l ) ,  the 

I4  FLM 203 
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FIGURE 5. Flow pattern in the lung-like model with a local perturbation imposed on the tube wall 
stiffness, K,.  (a )  Perturbation in the wall stiffness. (b) The effect on flow of different values of the 
peturbation parameter A,. 

introduction of compressibility increases the importance of friction relative to that 
of stiffness variation, causing the FLS to move downstream to  a location where 
dKp/d[ is larger. 

A similar result can be obtained for uniform tubes from the work of Grotberg & 
Shee (1985). Their expression for wave speed can be reduced, in a frictionless system 
with massless walls, to c = cT[l -c2 +o(c4)] ,  where u = cT/cF. This reduction in wave 
speed also implies a reduction in limiting flow rate that scales with uz. 

Earlier (Elad et aZ. 1987), we have shown that local reductions in the rest cross- 
sectional area (A,) or wall stiffness (Kp) ,  enhances the tendency for flow limitation. 
Figures 4 and 5 show how these tendencies are accentuated by compressibility. For 
example, while a local area decrease of 20% is required to drive an incompressible 
fluid flow toward flow limitation (Elad et al. 1987), a 10 % decrease will suffice when 
fluid compressibility is considered with ME-, = 0.15. A similar behaviour is also 
observed for local reductions in the tube wall stiffness. 

4. Density dependence of maximum expiratory flow 
Maximal expiratory flow is determined by the complex interaction between 

parenchymal elasticity, airway geometry, airway mechanics and physical properties 
of the expired gas mixture, especially its density. The gas mixtures that are often 
used in clinical assessments and physiological investigations are 80 % helium with 
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20 YO oxygen (He-0,), and 80 9'0 sulphur hexafluoride with 20 Yo oxygen (SF,-0,) the 
properties of which are given in Appendix C. The maximal expiratory flow-volume 
curves for a particular normal subject, using different gas mixtures, are almost 
parallel to  each other, especially in the range 40-70% vital capacity, where wave 
speed limitation occurs (Pedersen et al. 1982; Castile et al. 1983, 1986), with a lighter 
gas mixture yielding larger maximal expired flow rates. The He-0, mixture can be 
used for clinical evaluations of airways diseases, since the normal increase in maximal 
expired flow rate during He-0, breathing is not observed in patients with 
obstructions in the peripheral or central airways (Despas, Leroux & Macklem 1972; 
Dosman et al. 1975). 

The effects of fluid compressibility for the different gas mixtures has been 
investigated by applying the present flow model to the more realistic lung model that 
we have developed earlier (Elad et al. 1988b), briefly described in Appendix B. With 
compressibility taken into account, the calculations are more complicated, since the 
density p is coupled with the variables of the right-hand side of the differential 
equations (table 2). Accordingly, numerical integration must be performed 
simultaneously for dala, W / W ,  dS2/S2 and dplp. To demonstrate the general 
trends of maximal expiration with different gas mixtures, we have carried out a 
complete calculation of the maximal expiratory flow rate for air, He-0, and SF,-0, 
a t  75% of total lung capacity. The critical point, where flow limitation occurs, was 
chosen by trial and error from different combinations of M*'+S*, = 1.0. The 
criterion for a critical point to be a FLS was that the following boundary conditions 
exist at the inlet ( E  = 0) : (i) pa, = p,, and (ii)MELO = (u/cFfs,,,, whereM5-o is obtained 
by numerical integration from = t* to t = 0, cp is calculated from af-o, and u is 
evaluated from &*. The results of the computations, for compressible and 
incompressible flows, are summarized in table 4. As before, the maximal flow rate is 
smaller for compressible flows, and the FLS is further downstream. However, the 
effects of fluid compressibility are small, perhaps immeasurably so, for all three 
mixtures. 

A common measure used to compare the maximal expired flow rate of gas mixture 
to that of air at the same lung volume is density dependence. It is usually measured 
a t  50% vital capacity and defined (for He-0, for example) as 

I n  vivo measurements have shown that for normal human subjects D D Z  = 
1.41 k0.12 (Castile, Hyatt  & Rodarte 1980), while for normal mongrel dogs DD$ = 
1.55+0.13 (Pedersen et al. 1982; Castile et al. 1983, 1986). 

We used the numerical procedure to evaluate the density dependence for He-0, 
and SF,-O,. For this computation we assumed that V ,  = 22.5% total lung capacity, 
as reported by Castile et al. (1980), and thus h = 1.75 at V, = 50% vital capacity = 
61.25% total lung capacity. Here, V, is the residual volume, V, is any lung volume 
between V, = 35% and 100% total lung capacity, and h = VL/VL, is the lung 
volume ratio. From the results summarized in table 5 ,  it is seen that compressibility 
scarcely affects the density dependence. The values of D D Z  computed here are 
within the range of the observed measurements in normal humans. The computed 
results for both He-0, and SF,-0,, we note, are smaller than the square of the 
inverse ratio of the respective densities of the mixtures. This result is expected since 
the choking flow rate is dependent not only on the fluid density, but, as well, on cross- 
sectional area (&,)* and wall stiffness at [ = E * .  Since the location of the FLS is 

14-2 
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Air He-0, SF,-O, 

Incompress- Compress- Incompress- Compress- Incompress- Compress- 
ible ible ible ible ible ible 

0.4040 0.4054 0.3740 0.3752 0.4240 0.4332 
0.6350 0.6855 0.6860 0.7490 0.6051 0.6365 
1.0000 0.9721 1 .oooo 0.9720 1 .0000 0.9670 
0 0.2345 0 0.2349 0 0.2550 
7.2334 7.1642 12.063 11.956 3.7030 3.6620 
1.2283 1.2285 1.2289 1.2290 1.2276 1.2286 
0.0107 0.0106 0.0104 0.0103 0.01 10 0.0108 
0 0.0012 0 0.0011 0 0.0015 

Effects of compressibility on maximal expiratory f h w  in the lung model (Appendix B) 
a t  V, = 75% total lung capacity, for three gas mixtures. 

Air 

He-0, [-’*I = 1.7244 
PHe-0 ,  

SF,-O, [el’= 0.5011 

Incompress- 
ible 

0.3927 
0.5683 
1 .oooo 
0 
5.7043 
1.0576 
0.01 15 
0 

- 

Compress- 
ible 

0.3964 
0.5887 
0.9820 
0.1889 
5.6612 
1.0576 
0.01 14 
0.0012 

- 

Incompress- 
ible 

1.6456 
0.3540 
0.6290 
1 .oooo 
0 
9.3869 
1.0576 
0.01 10 
0 

Compress- 
ible 

1.6463 
0.3566 
0.6605 
0.9816 
0.1910 
9.3202 
1.0576 
0.0109 
0.0011 

Incompress- 
ible 

0.5164 
0.4168 
0.5379 
1 .moo 
0 
2.9461 
1.0576 
0.0118 
0 

Compress- 
ible 

0.5158 
0.4256 
0.5482 
0.9783 
0.2074 
2.9198 
1.0576 
0.01 17 
0.0014 

TABLE 5. Effects of compressibility on maximal expiratory flow and density dependence a t  
V ,  = 50% vital capacity, for three gas mixtures. 

different for the different gas mixtures, the flow-rate is not a function of the density 
ratio alone. 

In  the real lung model (Elad et al. 1988b) the trachea extends between E = 0.548 
and 6 = 1.0. From table 5 we see that the FLS is located at 50 % vital capacity in the 
trachea for all mixtures, as reported by Pedersen et aE. (1982) and Castile et al. (1983, 
1986). Castile et ad. (1986) measured the cross-sectional area at the FLS and found it 
to be about 0.1 em2 smaller for He-0, than for air. For a typical trachea, this 
corresponds to Aa = 0.03-0.05, in approximate agreement with our computations 
(table 5). The computed maximal flow rate for air a t  50 YO vital capacity (5.66 l/s) is 
within the range of values measured by Castile et al. (1980, 1983, 1986). 

Comparison between the patterns of compressible and incompressible critical flows 
(tables 4 and 5) indicates that incorporation of gas compressibility does not have a 
significant effect on the flow, in accordance with the comparative stiffness of the 
airways and the gas mixtures (table 1). Since the airway stiffness is directly related 
to the wall stiffness ( K p ) ,  we also examine the effect of wall stiffness on the flow 
pattern by multiplying K&) by a constant factor, PKp. In the absence of clinical 
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P K ,  

Air 
a* 
5* 
S* 
M* 
Q* (11s) 

He-0, 
a* 

S* 
M* 

5* 

Q* (1/4 
DD50 

SF,-0, 

5* 

Q* (11s) 
DD,O 

a* 

S* 
M* 

0.5 

0.3889 
0.5974 
1 .0000 
0 
4.1195 

0.3374 
0.6879 
1 .OoOo 
0 
6.6830 
1.6223 

0.4217 
0.5524 
1 .moo 
0 
2.1463 
0.5210 

Incompressible flow 

1 .o 2.0 5.0 

0.3927 0.3986 0.4057 
0.5683 0.5498 0.5351 
1.uooo 1.0000 1.0000 
0 0 0 
5.7043 8.0268 12.720 

0.3540 0.3710 0.3886 
0.6290 0.5884 0.5566 
1 . ~ 0 0  1.0000 1.0000 
0 0 0 
9.3870 13.374 21.452 
1.6456 1.6618 1.6864 

0.4168 0.4157 0.4166 
0.5379 0.5293 0.5228 
1.0000 1.0000 1.0000 
0 0 0 
2.9461 4.1125 6.4656 
0.5165 0.5123 0.5083 

0.5 

0.3904 
0.6090 
0.9907 
0.1360 
4.1042 

0.3396 
0.7049 
0.9899 
0.1414 
6.6589 
1.6255 

0.4261 
0.5585 
0.9887 
0.1500 
2.1363 
0.5205 

Compressible flow 

1 .o 2.0 

0.3964 0.4061 
0.5887 0.5908 
0.9820 0.9633 
0.1889 0.2683 
5.6611 7.9075 

0.3566 0.3747 
0.6605 0.6545 
0.9816 0.9616 
0.1910 0.2744 
9.3202 13.184 
1.6464 1.6673 

0.4258 0.4340 
0.5484 0.551 1 
0.9778 0.9547 
0.2098 0.2975 
2.9186 4.0380 
0.5156 0.5107 

5.0 

0.4255 
0.7882 
0.8503 
0.5263 

12.297 

0.3990 
0.8544 
0.8602 
0.5099 

1.6973 

0.4666 
0.6285 
0.8573 
0.5148 
6.1724 
0.5019 

20.873 

TABLE 6. Comparison of maximal expiratory flows a t  V, = 50% vital capacity for 
different overall airways stiffnesses, and three gas mixtures. 

0.5 1 .o 2.0 5.0 
P K P  

Air 
KPO/P4 0.0060 0.0120 0.0210 0.0601 
Q 0.0037 0.0076 0.0 149 0.0333 

KP,lPC2, 0.0052 0.0104 0.0209 0.0522 
c? 0.0036 0.0071 0.01 42 0.0270 

K p o l f  4 0.0082 0.0163 0.0327 0.08 17 
Q 0.0047 0.0093 0.0181 0.0453 

He-0, 

SF,-0, 

TABLE 7. Effects of different airway stiffnesses on the comparative ratio = (Q:,,,,,-Q,*,,,)/Q:,,,,,. 
Evaluated for the numerical results of table 6. 

information concerning the extent of change in airway stiffness in diseases such as 
emphysema or pulmonary fibrosis, we assume several values for PKP between 0.5 and 
5.0. Values of critical flows a t  V, = 50% vital capacity for three gas mixtures with 
several airways stiffnesses (represented by P,,) are summarized in table 6. The 
results show that increased wall stiffness increases the flow rate, but the difference 
between incompressible and compressible flow rates remains very small. However, 
increased wall stiffness increases the differences in the flow pattern, as indicated by 
the cross-sectional-area ratio (a*) and location (t*) of the FLS, as well as the values 
and distribution of X and M .  

Analysis of the values of flow rate in table 6 shows that a dimensionless parameter 
such as Kpo/pct,  where KpO = K ,  (( = 0 ) ,  may be used as an indication of the effect 
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of compressibility on the critical flow rate (or flow limitation). We define the ratio 
Q = (Q&,mp - Q,*m,)/Q~n,om, to  represent the difference between incompressible 
and compressible flow rates. We find that changes in Q scale within changes in the 
dimensionless grouping c k / c i  which we represent by K,,/pci. As shown in table 7 the 
ratio of Q to K,,/pc$ (for results of table 6) falls between the values of 1.4 and 2.0 for 
the simulations presented here. 

5. Conclusions 
This study examines the effects of gas compressibility on flow patterns in 

collapsible tubes with particular emphasis on forced expiration manoeuvres. Applied 
to lung models, the results show that compressibility does affect the flow pattern but 
has only a small influence on the flow rate. The most significant effect is the 
movement of the FLS to a location further downstream. This downstream movement 
is increased for lungs with stiffer airways. In  cases with local non-uniformities in the 
airway cross-sectional area or wall stiffness, compressibility can more significantly 
enhance the tendency of the flow to reach flow limitation. 

This work was partially supported by the NHLBI (grant no. P01-HL-33009). Dr 
D. Elad is presently a Bat-Sheva de Rothschild Fellow. 

Appendix A. Lung-like model (Elad ei al. 1987) 
The bronchial tree is considered symmetric, and its geometry is described by the 

number and total cross-sectional area of bronchi represented by smooth and 
continuous functions of distance along the airway system (see Elad et al. 1987, figure 
1 ) .  The geometry of the first 10 generations of Weibel's (1963) measurements are well 
described by the rest area, which is expressed by A,( ( )  = 2.26((+0.01)-0.3 cm2, and 
the number of bronchi, which is e,xpressed by N ( ( )  = 1.04((+0.01)-1.36, where ( = x / L  
is non-dimensional length and the overall length of the airway system is L = 18.4 cm. 
The airway stiffness is represented by a single similarity tube law, f7 = (paw-pA) /Kp 
- - a20.0- a-1.5, for the entire range of deformation (a  > 1.0for inflation, and a < 1.0 for 
deflation). The alveolar pressure ( p A )  is the pressure acting on the external wall of the 
airways, while the airway pressure (paw) is the local internal fluid pressure. The wall 
stiffness variation along the bronchial tree is assumed to be given by K,(() = 50exp 
(1 .g)  N/m2. The fluid flow is assumed one-dimensional. The wall shear stress is 
represented using a turbulent friction coefficient of fT = 0.005. 

Appendix B. Real lung model (Elad ei al. 1988a,b) 
This model is similar in principle to the lung-like model (Elad et al. 1987), but has 

more realistic parameters. The bronchial tree is considered symmetric and includes 
the 17 generations of conducting airways, defined by Weibel (1963) from a human 
lung inflated to 75% total lung capacity. The total rest area of the cross-sections 
is given by A,( ( )  = 2.33((+0.01)-0~9- 14.0exp (-3.98tJ cm2 and the number of 
branches byN(6) = 1.04(~+0.01)-2~4-20.0exp ( -Fig%),  where 5 = x /L  and L = 26.5 
cm (Elad et al. 1988b). 

The similarity tube law for the airways is considered to be lung-volume 
(V,) dependent, and is given by n= (p&w-pA-po) /Kp = a0.5-a-0.2, where 
a = A/A,(h) ,  K,(h) = 16.7exp (2.46) A,(h) = 0.92Ao(() [1.0+0.0135(h2.'- 111 cm2, 
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Gas mixture p (kg/m3) p x lo5 (kg/m s) Y (cm2/s) Y CF ( d s )  

Air 1.13 1.9 0.168 1.400 353.0 

He-0, 0.38 2.1 0.550 1.588 652.9 

SF,-O, 4.50 1.6 0.035 1.100 151.7 

TABLE 8. Physical constants of gas mixtures a t  37 "C and atmospheric conditions. 

[1.0+0.078(h2.7- l)] cm H,O, p,(h)  = -0.0136(h7.4- 1) cm H,O and h = VJV,, is 
the lung-volume ratio. V,, = 35 YO total lung capacity is assumed to be the unstressed 
lung volume (Elad et al. 1988~).  

The flow is considered one-dimensional, where the wall shear stress expressed as 
T, =$pu"fT. The friction coefficient is assumed to be of the form fT= 

16(1.5+0.0013Re)/Re, where Re = uD,/v is the Reynolds number. 

Appendix C. Properties of gas mixtures 
Previous investigators (Castile et al. 1980, 1983, 1986; Pedersen et al. 1982; 

Pedersen & Ingram 1985; Isabey & Chang 1981 ; Lambert 1986; Mink, Ziesmann & 
Wood 1979; Wood et al. 1976) used the following values for the density p of the gas 
mixtures: 1.07-1.13 kg/m3 for air, 0.372-0.44 kg/m3 for He-0,, and 4.27-4.58 kg/m3 
for SF,-0,. For the viscosity coefficient p they used: 1.87-1.89 x lr5 kg/(m s) for air, 
2.10-2.26 x lCF5 kg/(m s) for He-0, and 1.60-1.62 x lCF5 kg/(m s) for SF,-0,. 

The gas mixture is assumed dry, since water vapour and CO, have negligible effects 
on y and cF in the physiological range (Visser 1979). We assume atmospheric 
conditions a t  37 "C and take the values for air (78% N,, 21 YO 0,, 1 YO CO, and H,O) 
from Ower & Parkhurst (1977). For the gas mixtures of He-0, and SF,-0,, we 
corrected slightly the ratios with respect to air that were measured by Isabey & 
Chang (1981) a t  20 "C. The results are summarized in table 8. The kinematic viscosity 
is given by v = pip. 

The ratio of specific heats y and the velocity of sound cF for a given gas mixture 
can be determined by the molar quantities of the mixtures subject to the ideal-gas 
assumption (Visser 1979). The mean molar mass of a gas mixture is 

M =  ExiMi, 
i 

where i is the number of gas components and xi is the fraction of gas i in the mixture 
(Ex, = 1.0). The mean ratio of specific heats for a gas mixture can be evaluated 
(Visser 1979) with good accuracy (within 2-3 YO of tabulated data for water vapour, 
nitrous oxide and carbon dioxide) from the following empirical equation : 

i 

were Ni is 1 for monoatomic gases, 2 for diatomic gases, and 3 for tri- or polyatomic 
gases. The velocity of sound of the gas mixture is given by 

where R = 8314.3 J/kg mol "K is the universal gas constant. 
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Following (C l),  (C 2) and (C 3), one can calculate p and cF for any gas mixture, and 
the results for air, He-0, and SF,-0, are summarized in table 8. SF, is a relatively 
complex molecule, thus we assume a priori that pSF, = 1.05. Since the empirical 
relations for (equation (C 2)) do not apply to complex molecules, we further assume 
that for the mixture SF,-O,, 7 = 1-10. 
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